Jump to content


Photo

Milliken Equation


  • Please log in to reply
5 replies to this topic

#1 CWA

CWA
  • New Member

  • 17 posts
  • Joined: November 11

Posted 14 November 2011 - 16:56

Can anyone help me understand the equation Milliken states to change a defined ride rate into an axle roll rate with the car's track as a function.

The equation is found in Chapter 16, Page 589, I have just modified it to assume that all units used are the same (N and m):

K₵f = (Krf * t^2)/2

₵ is supposed to be fi, where K₵f is front roll rate
Krf is front ride rate
and t is track

I have tried using trig for a certain example I am studying to give a value for how many Nm are required to roll the chassis 1 degree. This method makes sense to me geometrically, but gives a different value to Milliken's as above.

Shouldn't suspension geometry be considered?

Advertisement

#2 Greg Locock

Greg Locock
  • Member

  • 4,588 posts
  • Joined: March 03

Posted 14 November 2011 - 18:09

(b)Shouldn't suspension geometry be considered?



Lets move 1 wheel up by one mm, and one wheel down by 1mm. The roll angle is then 2/t/1000 radians.

The torque across the vehicle is kf*1/1000*t N m

So the roll stiffness is kf/2*t^2 Nm/rad. Perhaps he wasn't calculating what you thought he was calculating

(b) no

Edited by Greg Locock, 14 November 2011 - 18:53.


#3 CWA

CWA
  • New Member

  • 17 posts
  • Joined: November 11

Posted 15 November 2011 - 10:17

Thanks for the reply.

For the torque across the front axle, why are you using the whole track, t but only using the 1mm of bump movement of the outer wheel? Shouldn't you use either half track with the movement of one wheel, or the total movement of both wheel for the whole track as you have done when calculating the roll angle in rads?

#4 Greg Locock

Greg Locock
  • Member

  • 4,588 posts
  • Joined: March 03

Posted 15 November 2011 - 22:01

Thanks for the reply.

For the torque across the front axle, why are you using the whole track, t but only using the 1mm of bump movement of the outer wheel? Shouldn't you use either half track with the movement of one wheel, or the total movement of both wheel for the whole track as you have done when calculating the roll angle in rads?

because a torque is the force at one end mulitplied by the distance between the two forces.

#5 Keith Young

Keith Young
  • Member

  • 266 posts
  • Joined: May 01

Posted 22 November 2011 - 03:38

Take a minute to google "Moment" and "Moment Couple" CWA. If you have any questions after that let us know.

#6 gruntguru

gruntguru
  • Member

  • 5,422 posts
  • Joined: January 09

Posted 22 November 2011 - 23:21

Take a minute . . .

. . . or a moment.